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Abstract

The stoichiometric relations of complex reaction networks were discussed with the general theory of stoichiometric number
introduced and developed by Horiuti et al. Horiuti introduced the concept of reaction route in the theory, in which the reaction
route was expressed by a set of stoichiometric numbers. The theory was applied to analyses of the stoichiometries in the reaction
network of the 11 pseudo-elementary reactions (steps) of the Belousov—Zhabotinski (BZ) reaction and its reduced mechanism
called the amplified Oregonator. Both of the mechanisms were developed by Noyes et al. for analysis of the oscillatory phe-
nomena of the BZ reaction. The amplified Oregonator was concluded sufficiently to describe the stoichiometries of the original
network of 11 steps by using the general theory of stoichometric number. In comparison of these analyses of the stoichiometries
in the above two mechanisms, a criterion for preserving overall stoichiometry in reduced mechanisms was introduced.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction Stoichiometric relations among chemical species in-
volved in a reaction, especially in a complex reaction,
The concept of the stoichiometric number, intro- are of importance in description of the steady states
duced by Horiuti and Ikushinfd], has been developed and reaction mechanism. Horiuti and Nakamura de-
by him and his coworkerf2—6]. The stoichiometric veloped the general theory of stoichiometric number,
number theory has been developed to determine thein which the concept of reaction route was introduced.
stoichiometric number of the rate-determining step, Each of reaction routes is specified by a set of stoi-
thus contributing to the elucidation of the reaction chiometric numbers. They showed that the reactions,
mechanisni6—11]. Further, the general theory of stoi- consisting of elementary reactions (or steps), are clas-
chiometric number was found to provide a method for sified by the number of reaction route. This theory
classification of complex reactions of so-called multi- had not been applied until the present author applied
ple reaction routef,5]. In this paper we deals with  to analyses of complex reaction networks of chemical
the latter case, i.e. the general theory of stoichiometric oscillation system§l2—-14]

number. Reaction networks of most chemical oscillation
systems are complicated and consist of many steps.

E-mail addressmakihiko.masuda@ma7.seikyou.ne.jp Noyes and his coworkers precisely investigated
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reaction. They interpreted oscillatory phenomena of 1.1. The general theory of stoichiometric number
the BZ reaction by the mechanism with ten stfids, and the reaction route

and then obtained the numerical solutions of limit cy-

cle oscillation, using a model, called the Oregonator,  First, we describe the general theory of stoichiomet-
which consists of five steps and three intermediates ric number including the concept of reaction route, by
[16]. In improvement of their mechanism (for exam- using the Brusselatdf?2], one of the simplest chem-
ple, [17]), they proposed the reaction network of 11 jcal oscillator, which is expressed by the following
pseudo-elementary reactions (steps) and its reducedscheme:

mechanism called as the amplified Oregonator model

of seven steps and five intermediates, and also ob-4 > X (1a)
tained the numerical solgtions of sustained oscillation 5 +X>Y+D (1b)
[18,19] When the reaction network of 11 steps was
reduced to the amplified Oregonator of seven steps,2X +Y — 3X (1c)
they carefully discussed the stoichiometric relations of
the two mechanisms. Noyes previously discussed how X = £ (1d)

to reduce a complex network to the simpler ¢ae],
adopting the multiplicity proposed by Cor[a1].

In a reduced mechanism of a complex reaction
network, stoichiometric relations of the reduced
mechanism should be consistent with those of the
complex reaction network at least at steady states.
Applying the general theory of stoichiometric number
introduced and developed by the late Prof. Horiuti,
we already discusse€ld?] the stoichiometries of the vy = vy — v (2
Brusselator proposed by Prigogine and Lefefast] N
for chemical oscillation phenomena and the Oregona- Wherev;'s are taken to be all positive at a steady state.
tor proposed by Field and Noyé&6]. Then we pre- . Denoting the amounts of speci®¥sandY involved
cisely discussed13] the stoichiometric relations of N the system of schemes (1a)—(1dpbgndY, respec-
the reaction networks of the BZ reaction, i.e. the reac- fively, the kinetic equations are expressed by the net
tion network of 11 steps and its reduced mechanism, "ates of respective steps;’s (s = 1-4 corresponding
the amplified Oregonator, proposed by Noyes and his 0 Steps (1a)—(1d)), as
coworkerd17-19] In this discussion, we introduceda dx
criterion for preserving overall stoichiometry in re- 5 = V17~ 2 tv3—v4 (3a)
duced mechanisms.

In the present memorial issue to the late Prof. dr
Horiuti, we again carried out reconsideration of the df
stoichometric relations of the BZ reaction networks At a steady state, wherexttr = dy/d: = 0, we have
proposed by Noyes et al., which leads to further im- from Egs. (3a) and (3b)
provement and development with respect to reference
[13]. First, we briefly describe the general theory of V3 = V2, V4 =1 4)
stoichiometric number and then discuss the stoichio-
metric relations of the reaction network of 11 steps
and its reduced mechanism, the amplified Oregonator.
On the basis of these discussion, we introduce a cri-
terion for preserving overall stoichiometry in reduced
mechanisms with an additional method. Finally, we
discuss the reaction route in reaction networks of
chemical oscillation systems. a=(vi,v5,v3,v;) =(1,0,0,1) (5a)

where A and B are reactantd) and E are products,
andX andY are intermediates.

In general, we consider a reaction network, which
consists ofS steps withl” intermediate species. In
schemes (1a)—(1dy = 4, andI’ = 2. Net rate,v
(s = 1,2,...,5) of each step is expressed by the
forward rate,v, and the reverse rate, s, as

=v—u3 (3b)

Takingv1 andv; arbitrarily to be equal to 1 and 0, or
equal to 0 and 1, respectively, we find it to be a solu-
tion of Egs. (3a) and (3b)Any solution ofEgs. (3a)
and (3b)at dX/dr = dY/dr = O is expressed by a lin-
ear combination of two linearly independent solutions,
a andb, in the form of vector, respectively
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b= v5v5 08 =(0,1,1,0 (5b)
as
v(v1, v, v3,00) = Ve -a+ V. b (6)
i.e.

__ya,a b b —
vy =Vl + Vo), s=1,...,4 7

Eqg. (7)implies that the net rates;,’s, of each steps
of schemes (1a)—(1d) are expressed by two valufes,
andv? of the independent solutiong,andb, and two
parametersy” andV?’. Each of the solutions; andb,
is called a reaction route (simply route) anior v?
is called the stoichiometric number of stejm routea
or b, respectively. IrEgs. (6) and (7)we can choose
the coefficientsV* andV?, for real values of,’s at
a steady state. The coefficiewit or \’ is called the
rate of routea or b, respectively.

The stoichiometric expression for roudeor b at
a steady state is obtained as follows. Stoichometric
equations of steps (1a)—(1d), multiplied by the respec-
tive stoichiometric number? or v? (s = 1-4), are
added, to result in

a:A— E (8a)
or
b:B— D (8b)

respectively. Thus the stoichiometric expression, cor-
responding to the general solution (6), is given as

VA+VPB — VPD + VE (9)

In general, the amount of each of intermediates in-
cluded in the system b¥; (i = 1,2,...,I') and its
differential with time, &;/dt, is expressed as a linear
function of v,’s. At a steady state,X] /dt =0 (i =
1,2,...,I'),we havd’ linear equations. The number
of independent equations Ihis denoted by, which
is called the number of independent intermediate. In
these equations, the number of independent solutions
denoted byP, is expressed bgand| as

P=S—1 (10)

In schemes (1a)—(1dy, = 4 and/ = 2, and thusP =

2. Each independent solution is expressed by vectors,
v (p=12...,P)as
vg)

v”:(vf,vé’,..., (12)
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and the general solution is given by linear combination
of the vectorsy?’s as

v=(v1,V2,...,Vs5)
=Y VP (p=12....P)

Practically we choose components of the indepen-
dent solutions as simple numbers, e.g. positive inte-
ger or a half. Each of independent solution8,(p =
1,2,..., P), is calledreaction routep (simply route

p), each component” (s 1,2, ...,5), the sto-
ichiometric number of steg in route p, V¥ (p =
1,2, ..., P)the rate of routep, | the number of inde-
pendent intermediates, aRds the number of reaction
route.

(12)

1.2. Application to the stoichiometry of the reaction
network of 11 steps of the BZ reaction

We now apply our method to the reaction network
of 11 steps for the BZ reaction proposed by Ruoff and
Noyes[18], which is expressed as

BrOz~ +Br~ + 2H" — HBrO, + HOBr (13a)
HBrO, 4+ Br~ + H* — 2HOBr (13b)
BrOs~ + HBrO; + H* — 2BroO, + H20 (13c)
BrO; + M™* 4+ HT — HBrO, + MY+ (13d)
2HBrO; — BrOz~ + HOBr+H™ (13e)
HOBr + Br~ + H™ — Bra + H»0 (13f)
RH+Br, — RBr+Br~ +H™ (13g)
HOBr + R* — ROH + Br* (13h)
RH+Br* — Br- +HT +R® (13i)
RH+M@+HD+ 5 MW+ L H+ L Re (13))
2R* 4+ H,0 — RH+ ROH (13Kk)

where RH is organic substrate,® Rts radical, and
M@+ and M*tD+ are metal ion catalysts. In the re-
action schemes (13a)—(13k), they claimed that there
existed two different overall reactions, both of which,
however, are described by the same stoichiometric ex-
pression, i.e.

BrOz~ + 3RH-+H™ — 2ROH+ RBr+ H,0  (14)
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First, we investigate the stoichiometry of the above The eight variables ofi4, ..., v11 are obtained as
reaction scheme by application of our method. In a solution fromEqgs. (15a)—(15iwith dX;/dr = O
the above reaction scheme, there are nine interme-(i = 1,2,...,9) and are related each other in the
diates, i.e. HBr@, HOBr, Br-, M®+tD+ M+ following equations:

BrO,, Bry, Br*, and R, each of which is denoted _
. v4 = 203 (166.)

by X1, Xo,..., X9, respectively. Those amounts
included in the system are expressed by italic vs = %(vl —v2 + v3) (16b)
X1, X2,..., Xg. The net rates of (13a)—(13k) are 1
denoted byvy, va, .. ., v11, respectively. The kinetic V6 = 5(v1+ v2 +v3) (16c)
equations with respect to the respective intermediates, 1 1
X1, Xo, ..., X9, are expressed as v7 =ve = 3(vi+vz2+3) (16d)
dx vg = V1 + V2 (16e)
—1=v1—v2—v3+v4—2v5 (15a)

dr Vg = vg = V1 + VU2 (16f)
dx
d_t2 =v1 + 2v2 + v5 — vg — vg (15b) V10 = v4 = 2v3 (169)
dXs v11 = v3 (16h)
o T T vz et 7+ v (15¢) wherev, vo, andvs are arbitrarily chosen. When three
dx vectors of 1, vz, v3) are independent each other, we
d—4 = v4 — V10 (15d) obtain three independent solutionsHifs. (15a)—(15i)

d at a steady state. Let us choosg, (2, v3) to be (2, 0,

dXs vt (15€) 0), (1, 1,0), and (0, 0, 2), and the solutions, which are
ar AT denoted by4, B, andC, respectively, can be obtained
dx as
8 2us— s (15f)
dr A=(20001112200 =,
dx = 1—

t
dx B=(1,1,0,00,1,1,2 20,0 = (v5),
=8 g — g (15h) ( )= ()

dr s =1-11 (17b)
dXo .
—_— = -2 15i

g~ BtvetvoTam @5 ¢ 00241110042 =00,

At a steady state,X/dt =0 (¢ = 1,2,...,9), we s =1-11 (17¢c)
obtain nine linear equations fromgs. (15a)—(15i) . )

but eight equations are independent each other sinceThe g_eneral solution oEq_s. (15a)—(1_5|)51t_a steady
the equation obtain frorkq. (15d)is identical with ~ State is expressed by a linear combinationAofB,
that fromEg. (15e) The rank of matrix of the nine andC as

linear equations of 11 variables is easily found to be 8.

; . . v = (v1, V2, U3, V4, Us, Vg, U7, U8, V9, V10, V11)
Therefore, the number of independent intermediates

A B c
is 8 and the number of stess 11 so thatthe number ~ =V"-A+V"-B+V".C (18)

of reaction routeP, is obtained fronkq. (10)as Thus, the net rates,’s of the respective steps are
P=S—-1=11-8=3 expressed as

vy =VAA L vBYE L v s =1-11 (19)

The number of reaction rout® = 3 implies that
there exist three independent solutions on kinetic Eq. (19)implies that the net rates;’s at a steady
Egs. (15a)—(15i)under the steady state condition. state are described by three vectdrsB, andC, and
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by three parameterd/4, VB, and V€. Accordingly,
the vectorA, B, or C is called a reaction route (or
simply routeA, B, or C, respectively), the element of

the vectorp?, v, orvC, is the stoichiometric number

§7s 0
of steps in route A, B, or C, respectively, and the
parameteM4, VB, or V€, is the rate of routet, B, or
C, respectively.

Stoichiometric expressions of routds B, andC
are obtained as follows. Stoichiometric equations of
stepss (s = 1-11), multiplied by the respective sto-
ichiometric numberp?, are added, to result in stoi-
chiometric expression of rout4, i.e.

BrO3~ + 3RH+ H' — 2ROH+ RBr+ H,O (20)

The expressions of route® and C, similarly ob-
tained, converged int&q. (20) It may be noted that,
if the respective steps @qs. (13a)—(13kdceur atv
times ¢ = 1-11), routed of Eq. (20)is completed at
a single occurrence. Similarly, the identical relation-
ships are shown to be present in rouesndC.
RoutesB and C, corresponding to the two overall
reactions, were found by Ruoff and Noygs8], but
route A was not found by them. However, routeis
necessary for description of the stoichiometry of the
reaction, which consists of steps (13a)-(13k), at the
steady state. These results show that the general theor
of stoichiometric number can provide us the whole
reaction routes in a complex reaction scheme without
any omission.

1.3. Stoichiometry of the amplified Oregonator

The reaction schemes (13a)—(13k) is too compli-
cated to lead to numerical analysis of oscillatory

Y
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Z - fY (21e)

whereX, Y, andZ are intermediate# andB the reac-
tants,P andQ the products, anfiis a coefficient. Inter-
mediatesX, Y, andZ, correspond to HBrg@ Br—, and
ceét (M@ +D+) included in schemes (13a)—(13k), re-
spectively. In this case§ = 5 and/ = 3, we see the
number of reaction route? = 2, from Eq. (10)

Ruoff and Noyes developed the Oregonator to the
amplified Oregonatof18], which is shown as

A+Y—> X+P (22a)
X+Y—2P (22b)
A+X+C—>2X+7Z (22c)
2X - A+ P (22d)
P—L (22e)
P—Y (22f)
Z—C (229)

whereA is a reactant Br@, L a product RBr, and,

Y, Z, P, and C the intermediates, which correspond
to HBrO,, Br—, and 2M"tD+ HOBr, and 2Mt,
respectively. Relations of schemes (22a)—(22g) to
schemes (13a)—(13k) are as follows. Steps (22a),
(22b), and (22d) correspond to (13a), (13b), and (13e),
respectively. Steps (22c), (22e), (22f), and (22g) were
obtained from combinations of two steps: (13c) and
(13d), (13f) and (13g), (13h) and (13i), and (13j) and
(13k), respectively. In the above scheme, reactants
and products, such as RH;"HROH and HO were
abbreviated and also intermediates, Br®ry, Bre,

phenomena. Field and Noyes proposed a simplified gng R in schemes (13a)—(13k) disappeared in simpli-

model, called the Oregonatdi6], which consists  fication by combination of steps described already. It

of five steps including three intermediates, to the s noted that, at combination of steps (13c) and (13d),
schem.es (13a).—(13k). 'Th.ey succeedgd .t0 obta.ln thetne expression of step (13d) is multiplied by a factor 2.

numerical solution of limit cycle oscillation, which We now investigate the reduced schemes (22a)—
was the_ first interpretation on BZ reaction. The Oreg- (22g), by using the general theory of stoichiometric

onator is shown as number. Amounts of intermediaté§ Y, Z, C, andP

A+Y - X (21a) are denoted by, Yo, ..., Y5, respectively, and the
net rates of steps (22a)—(22g) are denotedbfy =

X+Y—>P (21b) 1,2,...,7), respectively. Kinetic equations with re-
spect to the respective intermediates are expressed as

B+X—>2X+Z (21c) iy

2X > Q (21d) g =MV (23)
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where
Y = (Y1, Y2, Y3, Y4, Ys) (24a)
v = (v], V5, V3, vy, VS, Vg, VF) (24b)
and

1 -1 1 -2 0 0 0

-1 -1 0 0 0 1 0
M=1]0 0 1 0 0 o -1

0 0 -1 0 0 0 1

1 2 0 1 -1 -1 0

(24c)

The rank of matrixM is easily found to be 4 and the
number of steps is 7, so that the number of reaction
routeP equals 3. At a steady stateY fllr = 0, the net
rates,, vg, vg, andvy, are expressed frofag. (23)as

vy = (v — v+ vj) (25a)
vh = (v} + vh+ vj) (25b)
vg = V) + U5 (25¢)
vy = Vg (25d)

Taking (7, vy, v3) to be (2, 0, 0), (1, 1, 0), and (0,
0, 2), we obtain three independent routd§, B’, and
C’, respectively, fronEgs. (25a)—(254)i.e.

A'=(2001120=0Y), s=1-7 (26a)
B'=(1,1,0,01,20 =", s=1-7 (26b)
C'=(1,021102=0"), s=1-7 (26c)

The general solution diq. (23)under the steady state
condition, &/d: = 0, is expressed as

V=v" A4V B 4+VvE . 27)
Thus, the net ratesy,’s, of the respective steps are
expressed as

v, = VAV VBB Ly

¢ s=1-7 (28)

Stoichiometric expressions of routes, B’, and C’
are the same and given by
A— L (29)

whereA is BrOz~ andL is RBr.
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When reactants and products abbreviated in
schemes (22a)-(22g) are one more expressed, the
above expression becomes identical with. (20)

The net rates1, vz, andus of steps (13a), (13b), and
(13e) should be equal g, v/, andv) of steps (22a),
(22b), and (22d), respectively, since the former three
steps are identical to the latter three steps, respec-
tively. ComparingEg. (19)with Eq. (28) we obtain

vA = VA’, VB — VB/, vC — yC

Thus, routest’, B’, andC’ are found to correspond to
routesA, B, andC in schemes (13a)—(13Kk), respec-
tively.

1.4. A criterion for preserving overall
stoichiometry in reduced mechanisms

We have so far investigated the stoichiometries
of reaction schemes (13a)—(13k) and its reduced
schemes (22a)—(22g). We will now introduce “a cri-
terion for preserving overall stoichiometry in reduced
mechanisms” by investigation of the stoichiometric
relations between them.

In reaction schemes (13a)—(13Kk), the stoichiometry
at any steady state is describedHiq. (18) which
is expressed by three reaction routés B, and C,
and three parameters (the rates of rout&s)VvV2, and
V€. These parameters are dependent on experimental
conditions since net rates,’s, of stepss (s = 1-11),
depend on experimental conditions. Accordingly, each
of the net ratesyp,’s, is described inEq. (19) and
assumes to be a function ¥f*, V& andVC. Eq. (18)
is expressed bigs. (17a)—(17cas

v = (v1, V2, V3, V4, Us, Vs, V7, U8, V9, V10, V11)
=@vA+ VB vB 2vC ayvC vA L yC vA
+VB 4 vCe vA4 VB L yC 2vA
+2VB 2vA 4+ 2vB 4vC 2vC) (30)
In the reduced schemes (22a)-(22g3y. (27)is ex-
pressed as
v = (vy, V5, V3, vy, Vs, Vg, V7)
=@vA 4 vB v oyC yA yC yA y B
+vC 2vA 4 2vE 2v € (31)

First, we consider the case where we combine steps
(13c) and (13d) to step (22c). Stoichiometric equations
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of steps (13c) and (13d) are multiplied ID§ (=2
and vf (= 4), respectively, and are added to result in

2[BrO3~ + HBrO, + 2M™+ 4 3H]
— 2[2HBrO, + 2M"*+D+ 4 H,0]

which corresponds to step (22c), multiplied by a factor
2 and added by 3H and HO which are abbreviated
in the reduced schemes (22a)-(22g). A factor 2 cor-
responds to the stoichiometric numberuﬁ. There-
fore, the stoichiometry of the occurrenceuﬁ (=2
times of step (13c) and 0’14C (= 4) times of step (13d)
is identical with that of the occurrence of' (=2
times of step (22c). Thus, the occurrence/éftimes
of route C, which implies the occurrence of V¢
times of step (13c) and of{ V¢ times of step (13d),
corresponds to that of ¢’ times of routeC’, which
implies the occurrence mglvc’ times of step (22c).
This fact is shown irEgs. (30) and (31)

Next, we consider the case of steps (13f) and (139).
In route A, stoichiometric equations of steps (13f) and
(13g), multiplied byvg' (= 1) andv4 (= 1), respec-
tively, are added to result in
HOBr + 3RH — RBr + H>0 (32)

which corresponds to step (22e), in which 3RH and
H,O are abbreviated. In routeB and C, the same
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is easily found that the stoichiometry of the resultant
step gives that of stegsandk, as shown in the cases
of the combination of steps (13c) and (13d) and of the
combination of steps (13j) and (13k). When the sto-
ichiometric numbers of stegsandk are not zero in
two routes and those of stepandk in one route are
identical with those in another route, respectively, the
resultant step gives the stoichiometry of st¢@nd

k. This is shown in the case of steps (13h) and (13i),
because the combination of two steps in two routes
gives the same stoichiometric expression. The same
holds in the case where the stoichiometric numbers of
stepg andk are not zero in three routes as in the case
of steps (13f) and (13g). However, if steps (13a) and
(13b) are combined, the resultant step in roBteis
expressed as

BrOs™ -+ 2Br + 3H" — 3HOBr (33)

but the step in routd’ remains in the same expression
with (13a) multiplied by a factor 2. This discrepancy
between the stoichiometric expressions of routés
andB’ implies that the combination of steps (13a) and
(13b) does not hold for description of the stoichiom-
etry of the reaction schemes (13a)—(13k).

We now extend the above discussion to general ex-
pression. In determination of the three routesB,
and C, we choose simpler solutions, which can ex-
press the overall reaction (14). Since any linear com-

expression can be obtained. Therefore, the occurrencepination of solutionsA, B, and C, is a solution of

of (VA + VB +vC)times of the respective steps (13f)
and (13g), corresponds to that aff + V5" + v
times of step (22e).

Similarly to the above described cases, the occur-
rence of (¥4 + 2V B) times of the respective steps
of (13h) and (13l) is found to correspond to that of
(2vA + 2v 8’y times of step (22f). Similarly, the oc-
currence of ¥ times of step (13]), and\Z times of
step (13k) corresponds to that o¥9 times of step

(229).

As discussed above, the stoichometry of the reduced v4

schemes (22a)—(229) is consistent with that of the re-
action schemes (13a)—(13k). Although the net rates,
vy'S, of steps (13a)—(13Kk) vary with experimental con-

ditions, expression (18) holds at another steady state atyg

differentvA, VB, andVC, in whichv,’s are expressed
in Egs. (19) and (30When stepg andk are included
in only one route (i.e. the stoichiometric numbers of
stepsj and k are zero except for only one route), it

Egs. (15a)—(15j)we can choose another set of three
independent solutions, each of which is given by a lin-
ear combination oA, B, andC, so that the conditions
discussed above are not the ones necessary for the
consistency of stoichiometry. When combining steps
andk in reaction schemes (13a)—(13k), we can obtain
the relation between; andv; in Eq. (30) Ratios of
v;j/v, of combined steps are given as

v3 2v¢ 1

VA4 vEB L yC
ve VAV VT 1 (34b)
vz VA4VB4VyC

_2vAyvE) (340)
vg  2(VA4VB)
vig 4v€
o1 = 2y = (34d)
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These ratios are independent\¢f, VB, andVC. At
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which multiplies an intermediate 1.5 times in step (1c)

combination of steps (13a) and (13b), the ratio is ex- and twice in steps (21c) and (22c). Although in reac-

pressed as
vy 2VA 4+ VB
- =—VF (34e)

being dependent o' andVZ. The above relations do

tion schemes (13a)-(13k) we cannot apparently find
an autocatalytic process, the occurrence of both steps,
(13c) and (13d), causes multiplication of an interme-
diate, HBrQ, as already discussed. Even if we can
obtain the numerical solutions of limit cycle oscil-

not depend on choice of the three independent routes, |ation from the unreduced schemes (13a)—(13k), we

as shown inPAppendix A

Since the net rates’s vary with experimental con-
ditions, the rates of route¢?, V&, andVC vary with
the conditions. When stepsandk are combined un-
der the condition of a constant valuewgfv, as in the
cases oEgs. (34a)—(34dthe resultant step may give
the stoichiomtry of stepgandk. On the other hand,
if vj/ve depends orv4, VB, and/orVC, v;/v; varied

should appreciate the significance of the Oregonator
and the amplified Oregonator since these reduced re-
action schemes make it clear that the original reaction
schemes (13a)—(13k) implicitly includes autocatalytic
process.

Every reaction schemes of (1a)—(1d), (13a)—(13k),
and (22a)—(22g), have multiple routes, as shown
in Egs. (5a), (5b) (17a)—(17c), and (26a)—(26c)

with experimental conditions so that the resultant step respectively: One of the respective routes in those

cannot give the stoichiometry of stepandk. There-

three reaction schemes includes an autocatalytic

fore, we came to the result that the reduced schemeprocess explicitly in both schemes (la)-(1d) and
such as the amplified Oregonator has a criterion that (22a)—(22g), and implicitly in schemes (17a)—(17Kk).

the rate ratiop;/vi, should not vary with the rate of

Each of these routes including an autocatalytic pro-

reaction route in order to describe the same overall cess may be unstable at each of respective steady

stoichiometry as in the full unreduced scheme.

states and the others may be stable. We may infer that

The above criterion leads to another expression the reaction schemes of chemical oscillation systems

mathematically equivalent, which is shown by three
Egs. (A.5a)—(A.5cjn Appendix A i.e.

vf =rvf (352)
VB = o (350)
vjc = rka (35c¢)

where a constant is the rate ratiov;/v; which is
independent ofv4, VB, and V€. In the cases of
Egs. (34a)—(34d)Egs. (35a)—(35dare easily found
to be fulfilled and in the case diq. (34e)not to be
fulfilled. This expression is more convenient than the
former for finding the consistency of the stoichiomet-
ric relation, which is found fronkqgs. (17a)—(17cf
the independent reaction routes.

1.5. The reaction routes of chemical
oscillation systems

In reaction schemes of chemical oscillation sys-

tems, there exists, at least, an unstable steady state

which may lead to limit cycle oscillation. Most chem-

have both unstable and stable reaction routes. It is
necessary to perform stability analysis in their routes.

2. Concluding remarks

In general, a reduced reaction scheme (mechanism)
of a complex reaction network (scheme) includes sev-
eral reduced steps, each of which is obtained from a
combination of steps in the reaction network. As dis-
cussed above, the stoichiometry of the reaction net-
work is described by reaction routes, each of which is
expressed by the stoichiometric numbers of the con-
stituent steps of the reaction network. The net rates
vy’s of steps of the reaction network are expressed
by the stoichiometric numbers of the steps in the re-
spective reaction routes and their rates. At combina-
tion of two stepg andk of the reaction network, if a
rate ratio ofv;/v; expressed by the rates of the routes

1 Two reaction routes of reaction schemes (21a)—(21e) cannot
be separated into a route including an autocatalytic step (21c) and
that not including step (21c) since step (21e) was obtained by

ical oscillation systems include so-called an autocat- combination of too many steps to keep their stoichiometric validity.
alytic process, such as steps (1c), (21c), and (22c), As a result of the combination a coefficiehtvas introduced.
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and by the stoichiometric numbers is independent of C = (v$, ..., vE, ..., v§) (A.1c)
the rate of the routes, the resultant step describes the .
stoichiometry of stepg andk. If not, the same does ~ and the general solution is expressed as
not hold. Stoichiometric equations of the two stg¢ps
andk, multiplied by the stoichiometric numbers of re- M 5 c
spective steps, are added and then the resultant stepis =V A+ V" -B+ V"~ .C (A.2)
obtained. , ) Consider a case where a rate ratigjy, is indepen-
Therefore, in order that a redyced reaction schgme, dent of VA, VB, andVC, and we have
obtained from a complex reaction network, describes
the stoichiometry of the reaction network, it is nec- v; VAl + VB L vae
essary that rate ratios of /v; are independent of the v, — VAU? + VBvlf + chkc
rates of the reaction routes. Another expression of this
statement is given by the relations of the stoichiomet- Wherer is a constant. We have frofag. (A.3)
ric numbers of stepsandk in the respective reaction VAWA _
routes, i.eEgs. (35a)—(35c)e call this fact as “a cri- J k
terion for preserving overall stoichiometry in reduced ~ +V* (w7 —rvf) + VEO§ —rvf) =0 (A.4)
mechanism”.
The concept of the reaction route, which is shown SinceV4, V#, and V¢ are variables, we have from

to be useful for analyses of reaction networks, will Ed. (A.4)

v=(v1,...,Vg,...,0s)

=r (A.3)

be a powerful tool for stability analysis of a steady 4 _ o (A.5a)
state of a complex reaction network. When each of ’

reaction routes is separately analyzed with respect to vjl? = rvf (A.5b)
its stability, we will well understand the mechanisms

of chemical oscillation systems. This problem is left vf = rvkc (A.5¢)

for the further studies in progress. . .
prog Egs. (A.5a)—(A.5clare mathematically equivalent to

Eq. (A.3)

Acknowledgements Let us consider another set of three independent
routesA’, B/, andC’, which are given by linear com-
binations ofA, B, andC. We takeA’, B’, andC’ to
be equal toA, B, and 8 - B + y - C), respectively,
whereg andy are constant. If the rate ratig /v, ex-
pressed by routesy’, B’, andC’, gives the constant
value ofr, we will have the same relation in any set
of three independent routes.

Stoichiometric numbers;$” and vf”, of route C’
Appendix A are expressed as

The author acknowledges for the editors to let him
submit this manuscript to the present memorial issue
of his teacher Prof. Juro Horiuti. The author also ac-
knowledges valuable discussion with Dr. Akiko Ara-
mata and her critical reading of this manuscript.

. v](-:, = ,vi + yvjc (A.6a)
When net ratesp; and v, of stepsj and k are
expressed as a function &, V&, and V¢ of three ka’ = Bvf +yvf (A.6Db)
independent routes, whether the rate ratidy;, gives .
a constant value or not is independent of choice of 1he netrates); andvy, are expressed, respectively, as

the three independent routes. This fact is verified as vj = VA/VJA 4 VB/U]B + Vc’vjc/ (A.7a)
follows.

Let us express three independent routes as v = VA’U]? + VB’UE + Vc'vkc’ (A.7b)
A:(vf,...,v;‘,...,v?) (A.1a)

whereV4', vB' and V¢ are not identical withv4,
B=@wl . vB L vE) (A.1b) VB, andVC, respectively.

N
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Substituting ij’ and v¢' from Egs. (A.6a) and
(A.6b) into Egs. (A.7a) and (A.7h)respectively, we
have

vj = VA/vf‘ + (VB/ + ,BVC/)V;3 + yVC/ij (A.8a)

ve= VA + (VE 4 BVENE +yvELE  (A8D)

Substitutingv?!, v¥ andv§ from Egs. (A.5a)~(A.5c)
into (A.8a), we have
v =r{VA + (VB 4 BVENE 4y VvEE)

(A.9)
Thus, we have from (A.8b) and (A.9)

vj = lug (A.10)

which shows that the relation (A.3) is independen
of choice of three independent routes. It may be noted

thatEq. (A.3)is equivalent taEqgs. (A.5a)—(A.5¢c)
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